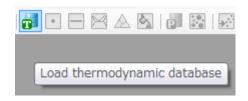
Pandat 2023 操作説明

Pan Phase Diagram

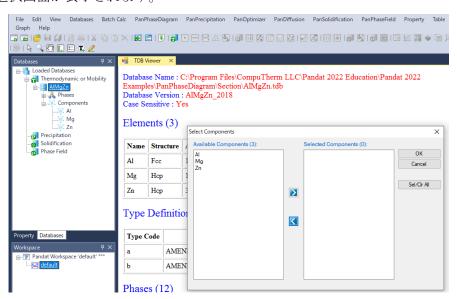
株式会社 材料設計技術研究所

Pandat 2023 Education を使ってみよう


Al-Zn 2元系を計算しよう

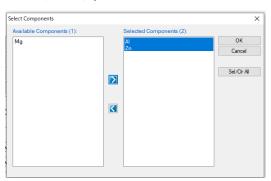
熱力学データベースファイルは標準インストールしたディレクトリに用意されています。 デモ版 Pandat2023Education ¥ Pandat2023Examples ¥ PanPhaseDiagram ¥ Section ¥ の中の AlMgZn.tdb を利用します。

1) Pandat を起動します。

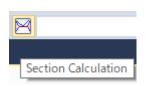


2) 熱力学データベースファイルを読み込むために メニューから Databases, 「Load TDB or PDB (Encrypted TDB)」を選択します。 もしくはアイコンをクリックします。

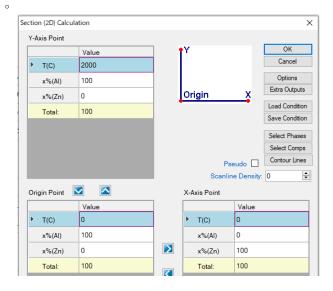
AlMgZn.tdb を選び、「開く」ボタンを押す。


元素選択画面が表示されます。

3) Select Components 画面にて

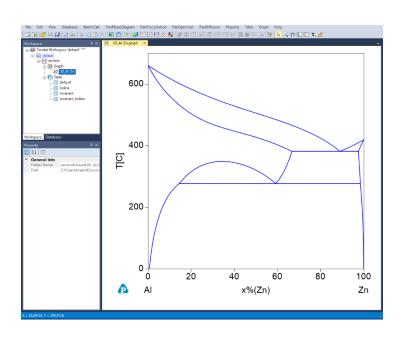

Al-Zn 2元系を計算するために、左枠にある AL を選択し、画面中央の \nearrow ボタンを押す。 左枠にある Zn を選択し、 \nearrow ボタンを押す。

AlとZnを右枠に移動させた後に、OK ボタンを押します。



4) 計算指示

メニューから PanPhaseDiagram, もしくはアイコンをクリックします。 「Section Calculation」を選択します。


Section (2D) Calculation 画面 が表示されます。

5) 計算

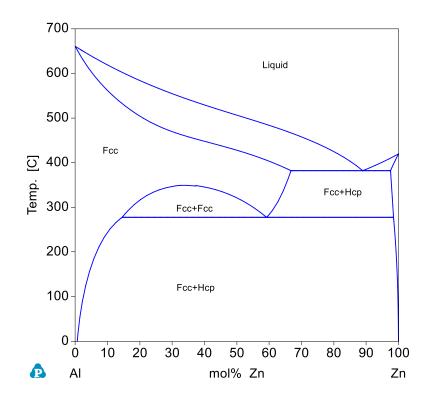
このまま、右上の「OK」ボタンをクリックします。 計算が始まります。

計算が終わると、自動的に計算結果が表示されます。

6) 画面上をクリックし、左側の窓の Property をクリックします。
Property 画面にて、横軸のタイトル、縦軸のタイトルを変更できます。
横軸数値の最小値・最大値・刻み幅を指定できます。
縦軸数値の最小値・最大値・刻み幅を指定できます。

7) 平衡領域の名前

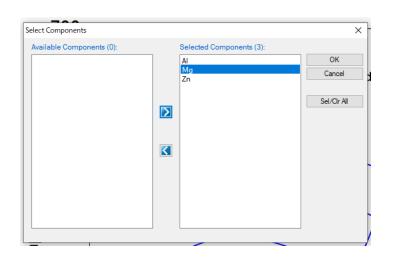
ラベルモードを on にするために、メニューの Graph から 「Label」を選択します。 もしくは、アイコン を選択します。


Label phase region (Hold 'Ctrl' to do a point calculation)

アイコンが十字の形になります。

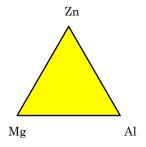
図上をクリックすることで、領域中の平衡相名を表示できます。 ラベルはギリシャ文字も入力可能です。

Ctrl キーを押しながら図上をクリックすると、その位置における1点平衡計算が実行され、 正確なラベルが表示されます。

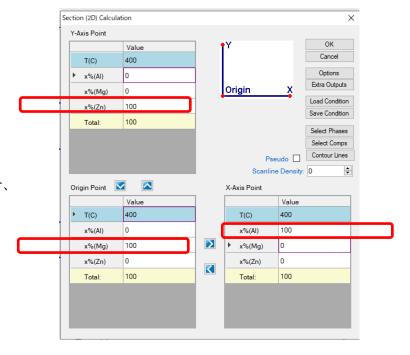

以上の操作を行うと、計算結果の図を下記のように整えられます。

8) 次に、Al-Mg-Zn 3元系 400℃等温断面図を計算しよう

メニューから Databases, 左枠にある Mg を選択し、 OK ボタンを押す 「 Select Components 」を選択します。

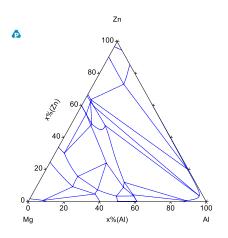

> ボタンを押す

計算指示画面


メニューから PanPhaseDiagram, 「Section Calculation」を選択します。 Section (2D) Calculation 画面が表示されます。

等温断面図を計算する場合、3か所の温度を全て同じにします。 400° とします。

三角上部に Zn、


左下に Mg、右下に Al を配置する場合、 3か所の位置と同じように濃度値 100 を指定します。

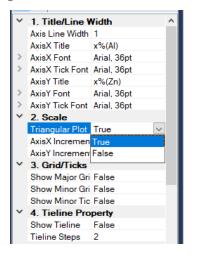
9) 計算

右上の「OK」ボタンをクリックします。

計算が終わると、自動的に三角図が表示されます。

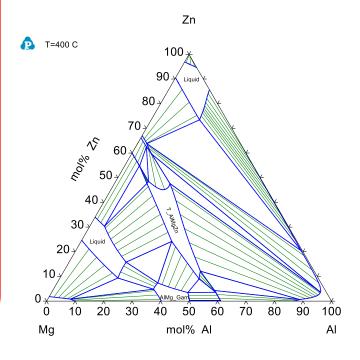
図を整える

図上をクリックした後、左窓の Propety から

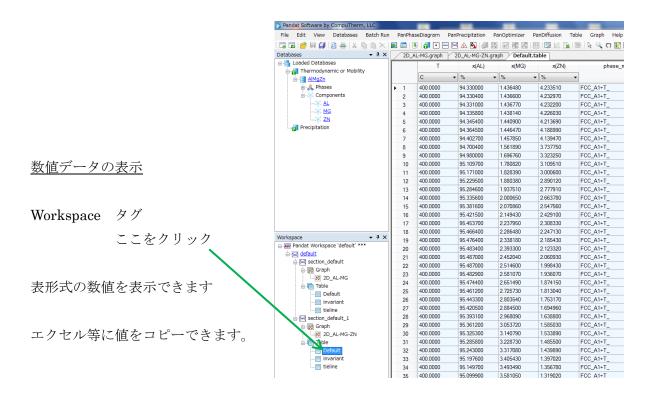

Show Tieline を True にすることでタイラインを表示できます。

重要

3角形の図の表示範囲を


変更するには、Scale の

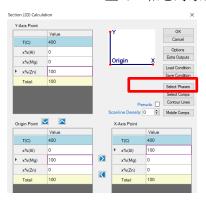
Triangular Plot を False にします。

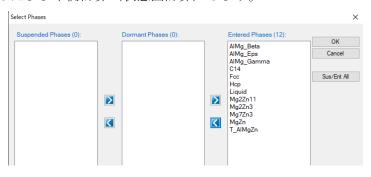


範囲や刻みを指定後に

True に戻します。

三角図を正三角形にする、お勧めは、左窓の Property の「 6. Margin 」の Top 値 0 を 3 などに変更します。三角図の高さが変わります。

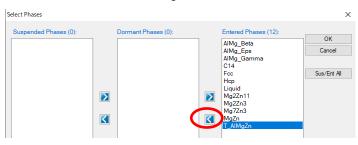

もしくは、メニュー、Table、Export to Excel を選択すると、エクセルが起動されます。


10) 相の選択・除外

通常は、全ての相を対象にして、平衡計算を行います。例えば Fe-C 2元系では、Graphite 相が平衡します。

もし、Cementite 相を出したい時には「Graphite 相を計算対象から除外する」 操作を行います。計算指示画面において「Select Phases」ボタンを押します。

本章のAl-Mg-Zn 3元系では下のような相が存在します。 通常は、このまま全ての相を対象にしたまま平衡計算(状態図計算)します。

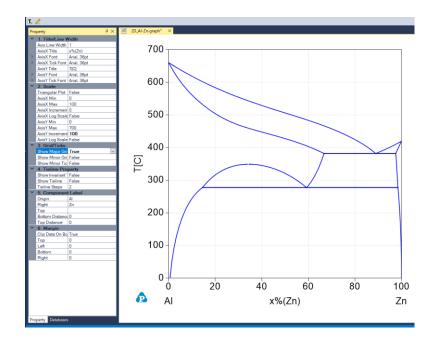

ここでは仮に T_AlMgZn 相を除外してみましょう。 Suspended にする。


右枠にある T_AlMgZn 相 を選択します。

右ボタン < を押します。

T_AlMgZn 相が中央の枠に 移動しました。

右ボタン < を押し $T_AlMgZn 相を左枠に移動
させます。これで Suspended
の状態になります。$

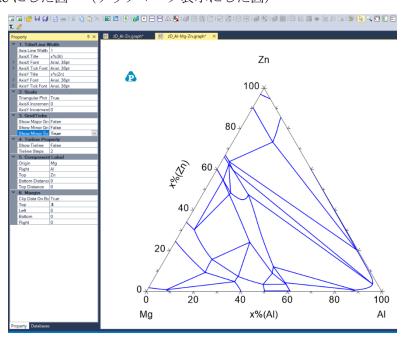

OK ボタンを押して、再度平衡計算を実行します。これは T_AlMgZn 相を除外した計算になります。

11) 図にグリッド線を表示できます

2元系状態図の場合、Property の 3. Grid/Ticks にて

Show Major Grid を True にした図

Show Minor Grid Show Minor Ticks

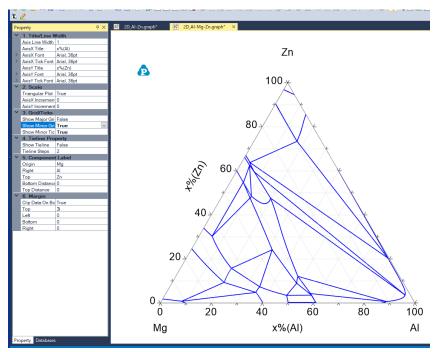


3元系状態図の場合、Property の 3. Grid/Ticks にて

Show Major Grid

Show Minor Grid

Show Minor Ticks のみを True にした図 (チックマーク表示にした図)

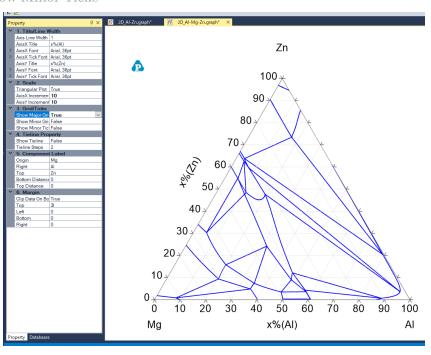


3元系状態図の場合、Property の 3. Grid/Ticks にて

Show Major Grid

Show Minor Grid を True

Show Minor Ticks を True にした図 (グリッド線の表示)

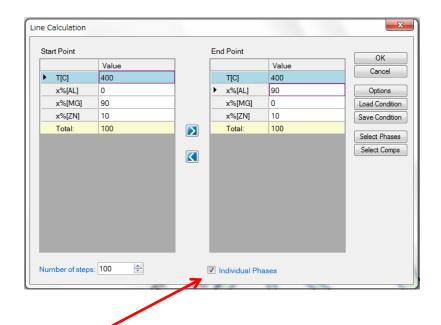


3元系状態図の場合、

Triangular Plot を False にし、刻み幅を 10 にしてから、Triangular Plot を True に戻す。

3. Grid/Ticks にて、Show Major Grid のみを True にした図 (グリッド線の表示)

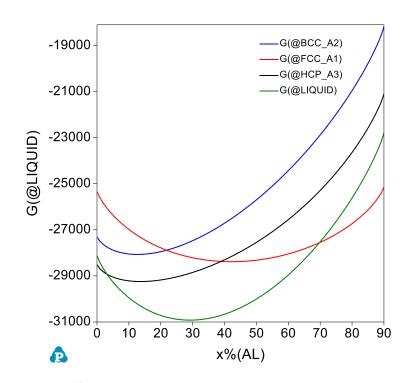
Show Minor Grid Show Minor Ticks


12) 組成・自由エネルギー曲線を計算しよう

メニューから PanPhaseDiagram, 「Line Calculation」を選択します。 もしくはアイコンをクリックする

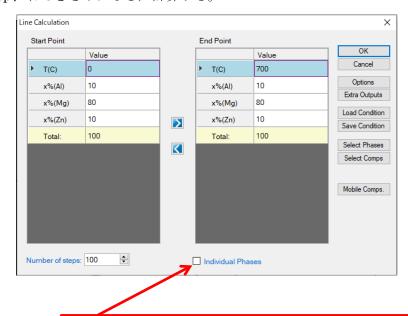
Line calculation

Al-Mg-Zn 3元系 400℃における 10mol%Zn 固定 90Mg10Zn ~ 90AL10Zn の濃度範囲を計算



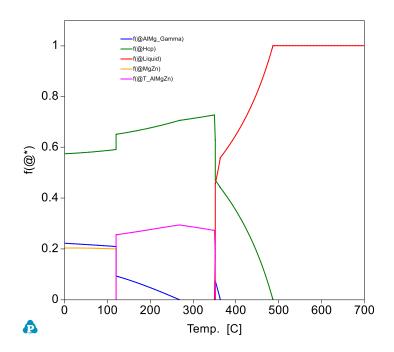
重要: 組成・自由エネルギー曲線 を計算する場合に限りここをチェックする

凡例は Legend により 表示できる


相の数が多い時は、 Select Phases ボタンで 相を選択できます

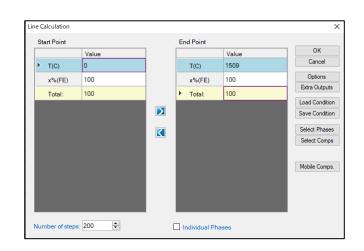
13) ライン計算

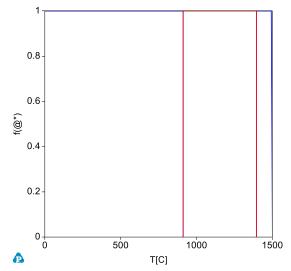
メニューから PanPhaseDiagram, 「Line Calculation」を選択します。


組成値を固定し、温度を変えたときの平衡相の比率を計算してみよう 温度 0 から 700 \mathbb{C} までを 100 step、(7 \mathbb{C} きざみになる) 計算する。

重要: 平衡計算ではこのチェックを外す

凡例は Legend により 表示できる

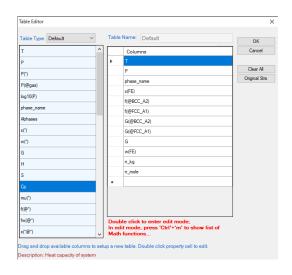

縦軸は Phase Fraction モルフラクション

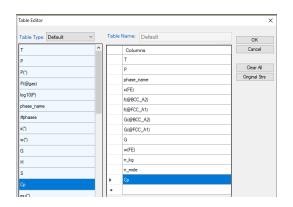


14) 比熱を求めるライン計算

メニューから PanPhaseDiagram, 「Line Calculation」を選択します。

純鉄の比熱の温度変化を求める計算をしてみよう。 元素「Fe」のみを選択し、 温度 0 から 1509 \mathbb{C} までを 200 step、(約 8 \mathbb{C} きざみになる) 計算する。

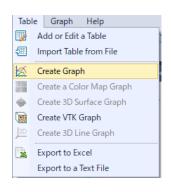




計算終了後に図が表示されるが、これは900℃付近にてフェライトからオーステナイトへ、 1400℃付近にてオーステナイトからデルタへ相転移することを示している。

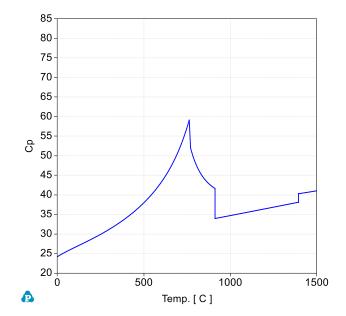
画面左側の「Workspace 窓」の Table の Default 部分をクリックすると、数値表が表示されます。 この後、メニューから Table、Add or Edit a Table を選択します。 次ページに示す、 Table Editor 画面が表示されます。

画面左枠にある「Cp」を選択し、そのまま押したまま右枠にドラッグします。OK ボタン。 (もしくは右枠に Cp と手入力します)



この操作により、数値表に比熱の列が新規に作られました。

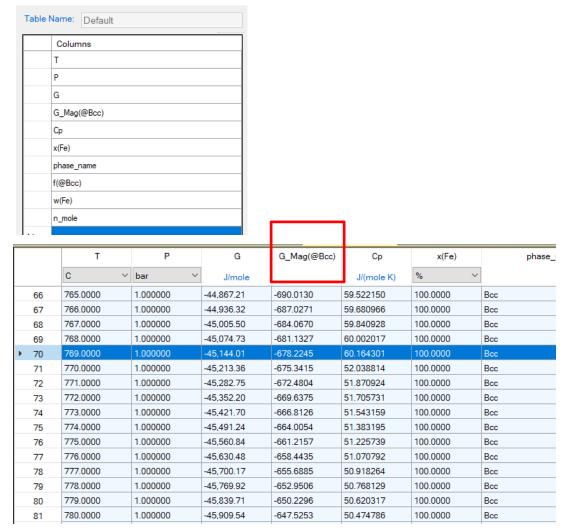
エクセルの操作の要領で、数値表の温度列のタイトルを一度クリックし、Ctrl キーを押しながら Cp 列のタイトルをクリックします。(2列を選ぶという意味)


この状態にて、メニュー Table から、Create Graph を選択すると、図が表示されます。

G	w(FE)	n_kg	n_mole	Ср
J/mole	% ~	kg	mole	J/(mole K)
7,478.0417	100.0000	55.847000	1.000000	24.190070
7,669.0104	100.0000	55.847000	1.000000	24.394007
7,864.8686	100.0000	55.847000	1.000000	24.591049
8,065.5276	100.0000	55.847000	1.000000	24.782081
8,270.9018	100.0000	55.847000	1.000000	24.967885
8,480.9091	100.0000	55.847000	1.000000	25.149153
-8,695.4704	100.0000	55.847000	1.000000	25.326502
0.014 E000	100 0000	EE 047000	1 000000	25 500404

比熱の単位は J/(mol K)

純鉄の比熱

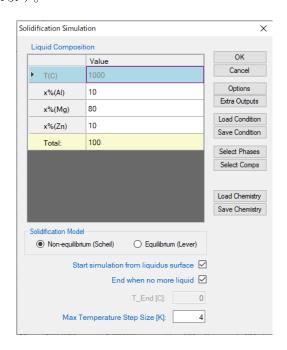

前ページの「純鉄の比熱」は、1991Dinの自由エネルギーもしくは Unary5.0の自由エネルギーを用いた場合である。この場合、Fe_Bcc 相のパラメータは磁気を含まない関数式で表現され、磁気過剰ギブスエネルギー (Hillert and Jarl モデル式で算出された分) が足される形で計算されている。

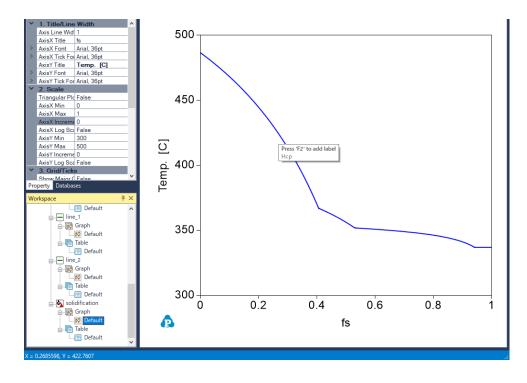
Tc = 1043 ケルビン G_{mag} = RT ln (β +1) $g(\tau)$

Pandat (PanPhaseDiagram) バージョン 2023 から磁気項の数値を取り出せます。

前ページのテーブルに、熱力学変数 $G_{Mag}(@^*)$ 、もしくは $G_{Mag}(@Bcc)$ を追加することで、温度 769 $^{\circ}$ $^{\circ}$

以上、純鉄について説明しましたが、多元系合金に関しても同じ操作です。

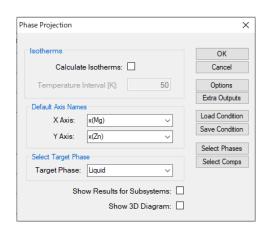

15

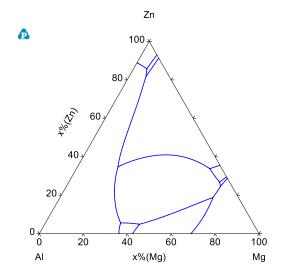

Pandat2023

15) Scheil モデル凝固計算

メニューから PanPhaseDiagram, 「Solidification Simulation」を選択します。

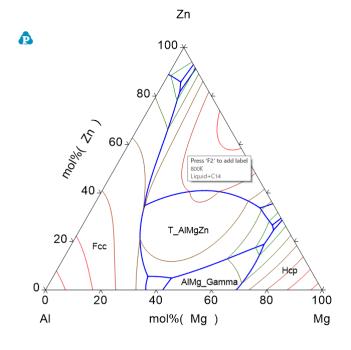
組成値を入力し、「OK」ボタンを押せば、計算が始まり、計算結果の図が表示されます。 縦軸は温度、横軸は fs (固相率)となる。線上にカーソルを置けば、晶出している相の名前が 表示される。より詳しい情報は、左側の Table の Default 部分をクリックすれば、数値テーブル が表示されます。



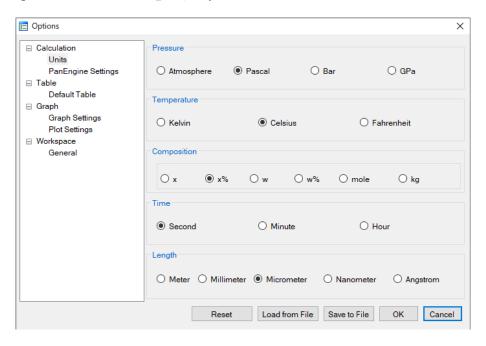

16) 3元系の液相面

メニューPanPhaseDiagram から「Phase Projection」を選択します。

X-Axis に Mg の濃度、Y-Axis に Zn の濃度を選択します。

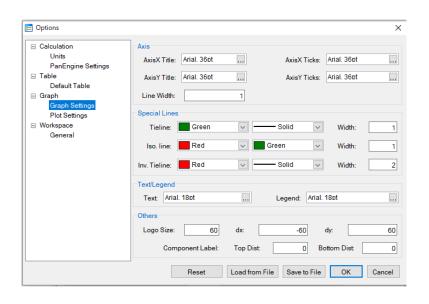

一番下の「Show 3D Diagram」のチェックを外します。 「OK」ボタンを押すと、計算処理が始まり、液相面図が表示されます。図上をクリックすると、その領域の初晶の相名が表示されます。

次に「Calculate Isotherms」にチェックを入れた場合、指定した温度幅の液相線温度の等高線が表示されます。線の上にカーソルを置くと、その温度値が表示されます。


付録 A 単位

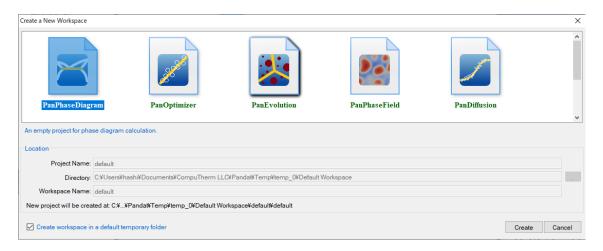
メニュー、View、Options を選択する。 もしくは、計算指示画面の「Options」ボタンをクリックすると単位設定画面になる。

Units


温度「 Celsius 」 これは ℃

濃度「 x% 」 これは at. % を意味する。

アイコン **P** のサイズ・位置を変更できます。 インストール時の値では 大きなアイコンになっています。


Graph Settings のおすすめは Logo Size 60 です。

付録 B PanPhaseDiagram モジュールを用いる

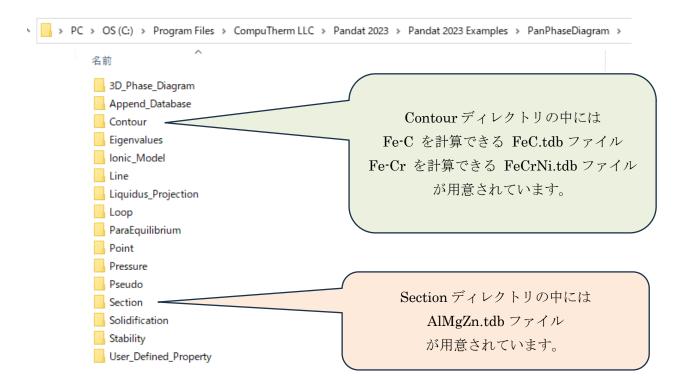
メニュー、View、Start Page を選択すると、起動初画面になる。

New WorkSpace をクリックすると、下記画面が表示される。

PanPhaseDiagram を選択し、Create ボタンを押す。

これで、熱力学データベースファイルを読めるようになる。

付録 C 操作事例集


標準インストールしたディレクトリの中に「Pandat 2023 Example book」 ディレクトリ があり、この中に

Example Book_2023.pdf 英文操作事例集があります。

さらに、

標準インストールしたディレクトリの中に「Pandat 2023 Examples」 ディレクトリがあり、この中に各種バッチ・ファイル pbfx が用意されています。 バッチ・ファイルは、画面操作を行わないで、計算を一括処理するためのものです。

TDB ファイル

