## Pandat 2023 操作説明

# PanPhaseDiagram

株式会社 材料設計技術研究所

Pandat 2023 Education を使ってみよう

Al-Zn 2元系を計算しよう

熱力学データベースファイルは標準インストールしたディレクトリに用意されています。 デモ版 Pandat2023Education ¥ Pandat2023Examples ¥ PanPhaseDiagram ¥ Section ¥ の中の AlMgZn.tdb を利用します。 1) Pandat を起動します。



2) 熱力学データベースファイルを読み込むために
 メニューから Databases, 「Load TDB or PDB (Encrypted TDB)」を選択します。
 もしくはアイコンをクリックします。



AlMgZn.tdb を選び、「開く」ボタンを押す。

元素選択画面が表示されます。

| File     Edit     View     Databases     Batch       Graph     Help       Image: Comparison of the second | Calc PanPhase                                                 | eDiagram                                                     | PanPrecipitation                                  | PanOptimizer                   | PanDiffusion     | PanSolidification | PanPhaseField | Property   | Table |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|--------------------------------|------------------|-------------------|---------------|------------|-------|
| Databases # ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Here TDB Viewe                                                | er X                                                         |                                                   |                                |                  |                   |               |            |       |
| G and the modynamic or Mobility<br>B AMoZO<br>B A Phases<br>Components<br>AI<br>S AI<br>S Mg<br>S To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Database M<br>Examples<br>Database V<br>Case Sensi<br>Element | Name : C<br>PanPhase<br>Version : .<br>itive : Yes<br>ts (3) | :\Program File<br>eDiagram\Sec<br>AlMgZn_201<br>s | es\CompuTh<br>tion\AlMgZn<br>8 | erm LLC\P<br>tdb | andat 2022 Edu    | ication\Panda | t 2022     | _     |
| Precipitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                             |                                                              | Select Componer                                   | nts                            | 0                | elected Component | n (D):        |            | ×     |
| Phase Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Name St                                                       | ructure .                                                    | Al                                                | ponenta (3).                   |                  | elected component | [             | ОК         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                                              | Zn                                                |                                |                  |                   |               | Cancel     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zn He                                                         | -19<br>-10                                                   |                                                   |                                |                  |                   | [             | Sel/Cir Al |       |
| Property Databases<br>Workspace # X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type De                                                       | e<br>AMEN                                                    |                                                   |                                |                  |                   |               |            |       |
| □- <b>P</b> Pandat Workspace 'default' ***<br>└ <b>⋈ default</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b                                                             | AMEN                                                         |                                                   |                                |                  |                   |               |            |       |

3) Select Components 画面にて

Al-Zn 2元系を計算するために、左枠にある AL を選択し、画面中央の > ボタンを押す。 左枠にある Zn を選択し、 > ボタンを押す。

AlとZnを右枠に移動させた後に、OK ボタンを押します。



### 4) 計算指示

メニューから PanPhaseDiagram, 「Section Calculation」を選択します。 もしくはアイコンをクリックします。

| 3                   |
|---------------------|
| Section Calculation |
|                     |

Section (2D) Calculation 画面 が表示されます。

| V-Avia Point                             |                                             |   |             |                   |                        |                |
|------------------------------------------|---------------------------------------------|---|-------------|-------------------|------------------------|----------------|
| T-AXIST OILL                             | Value                                       |   | Y           |                   |                        | OK             |
| T(C)                                     | 2000                                        |   |             |                   |                        | Cancel         |
| x%(Al)                                   | 100                                         |   |             |                   |                        | Options        |
| x%(Zn)                                   | 0                                           |   | Origin      | I                 | x                      | Extra Outputs  |
| Totali                                   | 100                                         | ' |             |                   | •                      | Load Condition |
| Total:                                   | 100                                         |   |             |                   |                        | Save Condition |
|                                          |                                             |   |             |                   |                        | Select Phases  |
|                                          |                                             |   |             |                   |                        | Select Comps   |
|                                          |                                             |   |             | Ps                | eudo 🗌                 | Contour Lines  |
|                                          |                                             |   |             | Scanlin           | e Density:             | 0              |
|                                          |                                             |   | X-Axis F    | oint              |                        | L. La          |
| Origin Point                             |                                             |   |             |                   | 1                      |                |
| Origin Point                             | Value                                       |   |             |                   | Value                  |                |
| Origin Point<br>T(C)                     | Value<br>0                                  |   | ► T(C       | )                 | Value<br>0             |                |
| <ul> <li>T(C)</li> <li>x%(Al)</li> </ul> | Value 0 100                                 |   | ► T(C<br>x% | :)<br>(AI)        | Value<br>0<br>0        |                |
| Origin Point ▶ T(C)<br>x%(Al)<br>x%(Zn)  | Value           0           100           0 |   | ► T(C<br>×% | )<br>(Al)<br>(Zn) | Value<br>0<br>0<br>100 |                |

#### 5) 計算

このまま、右上の「 OK 」ボタンをクリックします。 計算が始まります。

計算が終わると、自動的に計算結果が表示されます。



6) 画面上をクリックし、左側の窓の Property をクリックします。 Property 画面にて、横軸のタイトル、縦軸のタイトルを変更できます。 横軸数値の最小値・最大値・刻み幅を指定できます。 縦軸数値の最小値・最大値・刻み幅を指定できます。

7) 平衡領域の名前

ラベルモードを on にするために、メニューの Graph から 「Label」を選択します。 もしくは、アイコン を選択します。 Label phase region (Hold 'Ctrl' to do a point calculation)

アイコンが十字の形になります。

図上をクリックすることで、領域中の平衡相名を表示できます。

ラベルはギリシャ文字も入力可能です。

Ctrl キーを押しながら図上をクリックすると、その位置における1点平衡計算が実行され、 正確なラベルが表示されます。

以上の操作を行うと、計算結果の図を下記のように整えられます。



Pandat2023

8) 次に、Al-Mg-Zn 3元系 400℃等温断面図を計算しよう

メニューから Databases, 「 Select Components 」を選択します。 左枠にある Mg を選択し、 <mark>></mark> ボタンを押す OK ボタンを押す

| Select Components         | ×                                                    | 7 |
|---------------------------|------------------------------------------------------|---|
| Available Components (0): | Selected Components (3):<br>Al<br>Mg<br>Zn<br>Cancel |   |
|                           | Sel/Cir Ali                                          |   |
|                           |                                                      |   |
|                           |                                                      |   |

計算指示画面

メニューから PanPhaseDiagram, 「Section Calculation」を選択します。 Section (2D) Calculation 画面が表示されます。

等温断面図を計算する場合、3か所の温度を全て同じにします。 400℃ とします。



9) 計算

右上の「 OK 」ボタンをクリックします。

計算が終わると、自動的に三角図が表示されます。



図を整える

図上をクリックした後、左窓の Propety から

Show Tieline を True にすることでタイラインを表示できます。



三角図を正三角形にする、お勧めは、左窓の Property の「 6. Margin 」の Top 値 0 を 3 などに変更します。三角図の高さが変わります。



もしくは、メニュー、Table、Export to Excel を選択すると、エクセルが起動されます。

通常は、全ての相を対象にして、平衡計算を行います。例えば Fe-C 2元系 では、Graphite 相が平衡します。

もし、Cementite 相を出したい時には「Graphite 相を計算対象から除外する」 操作を行います。計算指示画面において「Select Phases」ボタンを押します。

本章の Al-Mg-Zn 3元系では下のような相が存在します。 通常は、このまま 全ての相を対象にしたまま平衡計算(状態図計算)します。



ここでは仮に T\_AlMgZn 相を除外してみましょう。 Suspended にする。



OKボタンを押して、再度平衡計算を実行します。これはT\_AlMgZn相を除外した計算になります。

### 11) 図にグリッド線を表示できます

2元系状態図の場合、Property の 3. Grid/Ticks にて Show Major Grid を True にした図 Show Minor Grid Show Minor Ticks



3元系状態図の場合、Property の 3. Grid/Ticks にて

Show Major Grid

Show Minor Grid

Show Minor Ticks のみを True にした図 (チックマーク表示にした図)



3元系状態図の場合、Property の 3. Grid/Ticks にて

Show Major Grid

Show Minor Grid を True

Show Minor Ticks を True にした図 (グリッド線の表示)



3元系状態図の場合、

Triangular Plot を False にし、刻み幅を 10 にしてから、Triangular Plot を True に戻す。 3. Grid/Ticks にて、Show Major Grid のみを True にした図 (グリッド線の表示)

Show Minor Grid

Show Minor Ticks



12) 組成・自由エネルギー曲線を計算しよう

メニューから PanPhaseDiagram, 「Line Calculation」を選択します。 もしくはアイコンをクリックする



ß

20

30

10

40 50

x%(AL)

60

70

80

90

#### 13) ライン計算

メニューから PanPhaseDiagram, 「 Line Calculation 」を選択します。

組成値を固定し、温度を変えたときの平衡相の比率を計算してみよう 温度 0 から 700℃までを 100 step、(7℃きざみになる)計算する。

| tart Point   |          | End Point     |               |                |
|--------------|----------|---------------|---------------|----------------|
|              | Value    |               | Value         | ОК             |
| T(C)         | 0        | ► T(C)        | 700           | Cancel         |
| x%(Al)       | 10       | x%(Al)        | 10            | Options        |
| x%(Mg)       | 80       | x%(Mg)        | 80            | Extra Outputs  |
| x%(Zn)       | 10       | x%(Zn)        | 10            | Load Condition |
| Total        | 100      | Total         | 100           | Save Condition |
| rotai.       |          | Total.        |               | Select Phases  |
|              |          |               |               | Select Comps   |
|              |          |               |               | Mobile Comps.  |
| mber of step | s: 100 호 | Individual Ph | ases          | Mobile Comps.  |
| mber of step | s: 100 🔹 | Individual Ph | ases          | Mobile Comps.  |
| mber of step | s: 100 💼 | Individual Ph | ases          | Mobile Comps.  |
| mber of step | s: 100 🔹 | Individual Ph | ases          | Mobile Comps.  |
| mber of step | s: 100 호 | Individual Ph | ases          | Mobile Comps.  |
| mber of step | ≋ 100 €  |               | ases<br>千一、小力 | Mobile Comps.  |





14) 比熱を求めるライン計算

メニューから PanPhaseDiagram, 「Line Calculation」を選択します。

純鉄の比熱の温度変化を求める計算をしてみよう。 元素「Fe」のみを選択し、 温度 0 から 1509℃までを 200 step、(約 8℃きざみになる)計算する。



計算終了後に図が表示されるが、これは 900℃付近にてフェライトからオーステナイトへ、 1400℃付近にてオーステナイトからデルタへ相転移することを示している。

画面左側の「Workspace 窓」の Table の Default 部分をクリックすると、数値表が表示されます。 この後、メニューから Table、Add or Edit a Table を選択します。 次ページに示す、 Table Editor 画面が表示されます。

画面左枠にある「Cp」を選択し、そのまま押したまま右枠にドラッグします。OK ボタン。 (もしくは右枠に Cp と手入力します)

| Table Type: Default | $\sim$ | ble Name: Default               | OK                |
|---------------------|--------|---------------------------------|-------------------|
| т                   | ^      | Columns                         | Cancel            |
| P                   |        | т                               |                   |
| P(*)                |        | P                               | Clear All         |
| P(@nas)             |        | phase_name                      | Original Str      |
| - (C 900)           |        | x(FE)                           |                   |
| log IU(F)           |        | f(@BCC_A2)                      |                   |
| phase_name          |        | f(@FCC_A1)                      |                   |
| #phases             |        | G(@BCC_A2)                      |                   |
| x(*)                |        | G(@FCC_A1)                      |                   |
| w(*)                |        | G                               |                   |
| G                   |        | w(FE)                           |                   |
| н                   |        | n_kg                            |                   |
| s                   |        | n_mole                          |                   |
| Co.                 |        |                                 |                   |
| ₩ <sup>2</sup>      |        |                                 |                   |
| mu()                |        |                                 |                   |
| ·(@*)               | [      |                                 |                   |
| fw(@*)              |        | puble click to enter edit mode; | - based for the f |
| x(*@*)              | ~      | ath functions                   | snow list of      |

| Table Type: Default ~ | Table | Default    | ОК           |
|-----------------------|-------|------------|--------------|
| т                     | ^     | Columns    | Cancel       |
| P                     | 1     | т          |              |
| P(*)                  |       | Ρ          | Clear All    |
| P(@nas)               |       | phase_name | Original Str |
| r (@gds)              |       | x(FE)      |              |
| log10(P)              |       | f(@BCC_A2) |              |
| phase_name            |       | f(@FCC_A1) |              |
| Aphases               |       | G(@BCC_A2) |              |
| x(")                  |       | G(@FCC_A1) |              |
| w(*)                  |       | G          |              |
| G                     |       | w(FE)      |              |
| н                     |       | n_kg       |              |
| s                     |       | n_mole     |              |
| -                     | •     | Cp         |              |

この操作により、数値表に比熱の列が新規に作られました。

エクセルの操作の要領で、数値表の温度列のタイトルを一度クリックし、Ctrl キーを押しながら Cp 列のタイトルをクリックします。(2列を選ぶという意味)

この状態にて、メニュー Table から、Create Graph を選択すると、図が表示されます。

| Table       |    | Graph                 | Help         |  |  |  |  |
|-------------|----|-----------------------|--------------|--|--|--|--|
| <b>B</b>    | A  | dd or Edit a          | a Table      |  |  |  |  |
| ا 🗷         |    | nport Table from File |              |  |  |  |  |
| X           | Cr | reate Graph           | ı            |  |  |  |  |
|             | Cr | reate a Colo          | or Map Graph |  |  |  |  |
|             | Cr | reate 3D Su           | rface Graph  |  |  |  |  |
|             | Cr | reate VTK G           | iraph        |  |  |  |  |
| <u>J</u> 3D | Cr | reate 3D Lir          | ne Graph     |  |  |  |  |
|             | Ex | port to Exc           | cel          |  |  |  |  |
|             | Ex | oport to a T          | ext File     |  |  |  |  |

| G          | w(FE)    | n_kg      | n_mole   | Ср         |  |
|------------|----------|-----------|----------|------------|--|
| J/mole     | % ~      | kg        | mole     | J/(mole K) |  |
| 7,478.0417 | 100.0000 | 55.847000 | 1.000000 | 24.190070  |  |
| 7,669.0104 | 100.0000 | 55.847000 | 1.000000 | 24.394007  |  |
| 7,864.8686 | 100.0000 | 55.847000 | 1.000000 | 24.591049  |  |
| 8,065.5276 | 100.0000 | 55.847000 | 1.000000 | 24.782081  |  |
| 8,270.9018 | 100.0000 | 55.847000 | 1.000000 | 24.967885  |  |
| 8,480.9091 | 100.0000 | 55.847000 | 1.000000 | 25.149153  |  |
| 8,695.4704 | 100.0000 | 55.847000 | 1.000000 | 25.326502  |  |
| 0.014 5000 | 100 0000 | EE 047000 | 1 000000 | 25 500404  |  |



前ページの「純鉄の比熱」は、1991Dinの自由エネルギーもしくは Unary5.0の 自由エネルギーを用いた場合である。この場合、Fe\_Bcc相のパラメータは磁気を含ま ない関数式で表現され、磁気過剰ギブスエネルギー (Hillert and Jarl モデル式で算出さ れた分)が足される形で計算されている。

Tc = 1043 ケルビン G<sub>mag</sub> = RT ln ( $\beta$ +1) g( $\tau$ )

Pandat (PanPhaseDiagram) バージョン 2023 から磁気項の数値を取り出せます。

前ページのテーブルに、熱力学変数 G\_Mag(@\*)、もしくは G\_Mag(@Bcc) を追加することで、 温度 769 ℃において、比熱 Cp は 60.1643 (J/molK) であり、系全体の自由エネルギーは -45,144 (J/mol) であり、この中に含まれている磁気項分の自由エネルギーは -678 (J/mol) とわかる。

以上、純鉄について説明しましたが、多元系合金に関しても同じ操作です。

| Ta | able Na | me: Default |          |            |             |            |          |        |
|----|---------|-------------|----------|------------|-------------|------------|----------|--------|
| Г  | (       | Columns     |          |            |             |            |          |        |
| E  | Т       |             |          |            |             |            |          |        |
| E  | Р       |             |          |            |             |            |          |        |
| F  |         |             |          |            |             |            |          |        |
| Ŀ  | -       |             |          |            |             |            |          |        |
| Ŀ  | G       | _Mag(@Bcc)  |          |            |             |            |          |        |
|    | G       | p           |          |            |             |            |          |        |
|    | x(      | (Fe)        |          |            |             |            |          |        |
| L  | pł      | hase_name   |          |            |             |            |          |        |
|    | f(      | @Bcc)       |          |            |             |            |          |        |
| F  | w       | (Fe)        |          |            |             |            |          |        |
| F  |         | mole        |          |            |             |            |          |        |
| E  |         | _mole       |          |            |             | 1          |          |        |
|    |         |             |          |            |             |            |          |        |
|    |         | Т           | Р        | G          | G_Mag(@Bcc) | Ср         | x(Fe)    | phase_ |
|    |         | c ~         | bar 🗸    | J/mole     |             | J/(mole K) | % ~      |        |
|    | 66      | 765.0000    | 1.000000 | -44,867.21 | -690.0130   | 59.522150  | 100.0000 | Bcc    |
|    | 67      | 766.0000    | 1.000000 | -44,936.32 | -687.0271   | 59.680966  | 100.0000 | Bcc    |
|    | 68      | 767.0000    | 1.000000 | -45,005.50 | -684.0670   | 59.840928  | 100.0000 | Bcc    |
|    | 69      | 768.0000    | 1.000000 | -45,074.73 | -681.1327   | 60.002017  | 100.0000 | Bcc    |
|    | 70      | 769.0000    | 1.000000 | -45,144.01 | -678.2245   | 60.164301  | 100.0000 | Bcc    |
|    | 71      | 770.0000    | 1.000000 | -45,213.36 | -675.3415   | 52.038814  | 100.0000 | Bcc    |
|    | 72      | 771.0000    | 1.000000 | -45,282.75 | -672.4804   | 51.870924  | 100.0000 | Bcc    |
|    | 73      | 772.0000    | 1.000000 | -45,352.20 | -669.6375   | 51.705731  | 100.0000 | Bcc    |
|    | 74      | 773.0000    | 1.000000 | -45,421.70 | -666.8126   | 51.543159  | 100.0000 | Bcc    |
|    | 75      | 774.0000    | 1.000000 | -45,491.24 | -664.0054   | 51.383195  | 100.0000 | Bcc    |
|    | 76      | 775.0000    | 1.000000 | -45,560.84 | -661.2157   | 51.225739  | 100.0000 | Bcc    |
|    | 77      | 776.0000    | 1.000000 | -45,630.48 | -658.4435   | 51.070792  | 100.0000 | Bcc    |
|    | 78      | 777.0000    | 1.000000 | -45,700.17 | -655.6885   | 50.918264  | 100.0000 | Bcc    |
|    | 79      | 778.0000    | 1.000000 | -45,769.92 | -652.9506   | 50.768129  | 100.0000 | Bcc    |
|    | 80      | 779.0000    | 1.000000 | -45,839.71 | -650.2296   | 50.620317  | 100.0000 | Bcc    |
|    | 81      | 780.0000    | 1.000000 | -45,909.54 | -647.5253   | 50.474786  | 100.0000 | Bcc    |

15) Scheil モデル凝固計算

メニューから PanPhaseDiagram, 「Solidification Simulation」を選択します。

組成値を入力し、「OK」ボタンを押せば、計算が始まり、計算結果の図が表示されます。 縦軸は温度、横軸は fs (固相率)となる。線上にカーソルを置けば、晶出している相の名前が 表示される。より詳しい情報は、左側の Table の Default 部分をクリックすれば、数値テーブル が表示されます。

|                                   | Value                                         |                                    |                                           |                   | UK              |
|-----------------------------------|-----------------------------------------------|------------------------------------|-------------------------------------------|-------------------|-----------------|
| ► T(C)                            | 1000                                          |                                    |                                           |                   | Cancel          |
| x%(Al)                            | 10                                            |                                    |                                           |                   | Options         |
| x%(Ma)                            | 80                                            |                                    |                                           |                   | Extra Outputs   |
| x%(7p)                            | 10                                            |                                    |                                           |                   | Load Condition  |
| × /0(ZII)                         | 10                                            |                                    |                                           |                   | Save Conditio   |
| l otal:                           | 100                                           | _                                  | _                                         | _                 | Select Phases   |
|                                   |                                               |                                    |                                           |                   | Select Comps    |
|                                   |                                               |                                    |                                           |                   |                 |
|                                   |                                               |                                    |                                           |                   | Load Chemistr   |
|                                   |                                               |                                    |                                           |                   | Course Channish |
|                                   |                                               |                                    |                                           |                   | Save Chemistr   |
| Solidification Mod                | lel<br>rium (Scheil)                          | ) Equ                              | ilibrium (Lev                             | er)               | Save Chemistr   |
| Solidification Mod<br>Non-equilib | lel<br>rium (Scheil)<br>tart simulatior       | ) Equ                              | ilibrium (Lev<br>dus surfac               | er)<br>e 🗹        | Save Unemist    |
| Solidification Mod<br>Non-equilib | lel<br>rium (Scheil)<br>art simulatior<br>Enc | O Equ<br>n from liqui<br>d when no | ilibrium (Lev<br>dus surfac<br>more liqui | er)<br>e 🗹<br>d 🗹 | Save Chemistr   |



16) 3元系の液相面

メニューPanPhaseDiagram から「Phase Projection」を選択します。

X-Axis に Mg の濃度、Y-Axis に Zn の濃度を選択します。

一番下の「Show 3D Diagram」のチェックを外します。 「OK」ボタンを押すと、計算処理が始まり、液相面図が表示されます。図上をクリックすると、その領域の初晶の相名が表示されます。



次に 「Calculate Isotherms」にチェックを入れた場合、指定した温度幅の液相線温度の等高 線が表示されます。線の上にカーソルを置くと、その温度値が表示されます。



付録A 単位

メニュー、View、Options を選択する。 もしくは、計算指示画面の「Options」ボタン をクリックすると単位設定画面になる。

Units

温度「 Celsius 」 これは ℃

濃度「 x% 」 これは at. % を意味する。

| <ul> <li>Calculation</li> </ul> | Pressure                                                 |  |
|---------------------------------|----------------------------------------------------------|--|
| PanEngine Settings<br>⊟ Table   | ○ Atmosphere                                             |  |
| Default Table<br>Graph          | Temperature                                              |  |
| Graph Settings<br>Plot Settings | O Kelvin   Celsius  Fahrenheit                           |  |
| General                         | Composition<br>O x                                       |  |
|                                 | Second     O Minute     O Hour                           |  |
|                                 | O Meter O Millimeter I Micrometer O Nanometer O Angstrom |  |

アイコン 
のサイズ・位置を変更できます。 インストール時の値では
大きなアイコンになっています。

Graph Settings のおすすめは Logo Size 60 です。

| E Options                                                                                                                                                                                                 |                                                                                |                               | ×                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------|
| <ul> <li>□ Calculation<br/>Units<br/>PanEngine Settings</li> <li>□ Table</li> <li>□ Graph</li> <li>□ Graph</li> <li>□ Graph Settings</li> <li>□ Plot Settings</li> <li>□ Workspace<br/>General</li> </ul> | Axis<br>AxisX Title: Arial. 36ot<br>AxisY Title: Arial. 36ot<br>Line Width:    | AxisX Ticks:                  | Arial. 36ot<br>Arial. 36ot                                             |
|                                                                                                                                                                                                           | Special Lines<br>Tieline: Green<br>Iso. line: Red                              | Solid       Green       Solid | Width:         1           Width:         1           Width:         2 |
|                                                                                                                                                                                                           | Text/Legend<br>Text Arial. 18ot<br>Others<br>Logo Size: 60<br>Component Label: | dx: 60<br>Top Dist 8          | 18pt                                                                   |
|                                                                                                                                                                                                           | Reset                                                                          | Load from File Save to File   | OK Cancel                                                              |

## 付録 B PanPhaseDiagram モジュールを用いる

メニュー、View、Start Page を選択すると、起動初画面になる。

New WorkSpace をクリックすると、下記画面が表示される。

|                                                           |                                        |                         |                                 |               |              | × |
|-----------------------------------------------------------|----------------------------------------|-------------------------|---------------------------------|---------------|--------------|---|
| PanPhaseDiag                                              | Yam                                    | PanOptimizer            | PanEvolution                    | PanPhaseField | PanDiffusion |   |
| n empty project for pha                                   | se diagram calcul                      | ation.                  |                                 |               |              |   |
|                                                           |                                        |                         |                                 |               |              |   |
| ocation                                                   |                                        |                         |                                 |               |              |   |
| Project Name:                                             | default                                |                         |                                 |               |              |   |
| ocation<br>Project Name:<br>Directory:                    | default<br>C:¥Users¥hashi¥l            | Documents¥CompuTherm LL | _C¥Pandat¥Temp¥temp_0¥Default V | /orkspace     |              |   |
| ocation<br>Project Name:<br>Directory:<br>Workspace Name: | default<br>C:¥Users¥hashi¥l<br>default | Documents¥CompuTherm LL | _C¥Pandat¥Temp¥temp_0¥Default V | /orkspace     |              |   |

PanPhaseDiagram を選択し、Create ボタンを押す。

これで、熱力学データベースファイルを読めるようになる。

付録 C 操作事例集

標準インストールしたディレクトリの中に「Pandat 2023 Example book」 ディレクトリ があり、この中に

Example Book\_2023.pdf 英文操作事例集

があります。

さらに、

標準インストールしたディレクトリの中に「Pandat 2023 Examples」 ディレクトリ があり、この中に各種バッチ・ファイル pbfx が用意されています。 バッチ・ファイルは、画面操作を行わないで、計算を一括処理するためのものです。

TDB ファイル

